Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
1.
Ageing Res Rev ; 80: 101697, 2022 09.
Article in English | MEDLINE | ID: covidwho-2031135

ABSTRACT

Interleukin-6 is a pleiotropic cytokine regulating different tissues and organs in diverse and sometimes discrepant ways. The dual and sometime hermetic nature of IL-6 action has been highlighted in several contexts and can be explained by the concept of hormesis, in which beneficial or toxic effects can be induced by the same molecule depending on the intensity, persistence, and nature of the stimulation. According with hormesis, a low and/or controlled IL-6 release is associated with anti-inflammatory, antioxidant, and pro-myogenic actions, whereas increased systemic levels of IL-6 can induce pro-inflammatory, pro-oxidant and pro-fibrotic responses. However, many aspects regarding the multifaceted action of IL-6 and the complex nature of its signal transduction remains to be fully elucidated. In this review we collect mechanistic insight into the molecular networks contributing to normal or pathologic changes during advancing age and in chronic diseases. We point out the involvement of IL-6 deregulation in aging-related diseases, dissecting the hormetic action of this key mediator in different tissues, with a special focus on skeletal muscle. Since IL-6 can act as an enhancer of detrimental factor associated with both aging and pathologic conditions, such as chronic inflammation and oxidative stress, this cytokine could represent a "Gerokine", a determinant of the switch from physiologic aging to age-related diseases.


Subject(s)
Aging , Inflammation/metabolism , Interleukin-6 , Aging/physiology , Dose-Response Relationship, Immunologic , Gene Expression Regulation , Humans , Interleukin-6/genetics , Interleukin-6/metabolism , Oxidative Stress , Signal Transduction
2.
PLoS One ; 17(2): e0263328, 2022.
Article in English | MEDLINE | ID: covidwho-1883630

ABSTRACT

Patients on dialysis are at risk of severe course of SARS-CoV-2 infection. Understanding the neutralizing activity and coverage of SARS-CoV-2 variants of vaccine-elicited antibodies is required to guide prophylactic and therapeutic COVID-19 interventions in this frail population. By analyzing plasma samples from 130 hemodialysis and 13 peritoneal dialysis patients after two doses of BNT162b2 or mRNA-1273 vaccines, we found that 35% of the patients had low-level or undetectable IgG antibodies to SARS-CoV-2 Spike (S). Neutralizing antibodies against the vaccine-matched SARS-CoV-2 and Delta variant were low or undetectable in 49% and 77% of patients, respectively, and were further reduced against other emerging variants. The fraction of non-responding patients was higher in SARS-CoV-2-naïve hemodialysis patients immunized with BNT162b2 (66%) than those immunized with mRNA-1273 (23%). The reduced neutralizing activity correlated with low antibody avidity. Patients followed up to 7 months after vaccination showed a rapid decay of the antibody response with an average 21- and 10-fold reduction of neutralizing antibodies to vaccine-matched SARS-CoV-2 and Delta variant, which increased the fraction of non-responders to 84% and 90%, respectively. These data indicate that dialysis patients should be prioritized for additional vaccination boosts. Nevertheless, their antibody response to SARS-CoV-2 must be continuously monitored to adopt the best prophylactic and therapeutic strategy.


Subject(s)
Antibodies, Neutralizing/immunology , Neutralization Tests , Renal Dialysis , SARS-CoV-2/immunology , Vaccination , Animals , Antibodies, Neutralizing/blood , Antibody Affinity , CHO Cells , COVID-19 Vaccines/immunology , Case-Control Studies , Cricetulus , Dose-Response Relationship, Immunologic , Follow-Up Studies , HEK293 Cells , Humans , Immunoglobulin G/blood , Risk Factors , mRNA Vaccines/immunology
3.
JAMA ; 327(7): 639-651, 2022 02 15.
Article in English | MEDLINE | ID: covidwho-1718172

ABSTRACT

Importance: Assessing COVID-19 vaccine performance against the rapidly spreading SARS-CoV-2 Omicron variant is critical to inform public health guidance. Objective: To estimate the association between receipt of 3 doses of Pfizer-BioNTech BNT162b2 or Moderna mRNA-1273 vaccine and symptomatic SARS-CoV-2 infection, stratified by variant (Omicron and Delta). Design, Setting, and Participants: A test-negative case-control analysis among adults 18 years or older with COVID-like illness tested December 10, 2021, through January 1, 2022, by a national pharmacy-based testing program (4666 COVID-19 testing sites across 49 US states). Exposures: Three doses of mRNA COVID-19 vaccine (third dose ≥14 days before test and ≥6 months after second dose) vs unvaccinated and vs 2 doses 6 months or more before test (ie, eligible for a booster dose). Main Outcomes and Measures: Association between symptomatic SARS-CoV-2 infection (stratified by Omicron or Delta variants defined using S-gene target failure) and vaccination (3 doses vs unvaccinated and 3 doses vs 2 doses). Associations were measured with multivariable multinomial regression. Among cases, a secondary outcome was median cycle threshold values (inversely proportional to the amount of target nucleic acid present) for 3 viral genes, stratified by variant and vaccination status. Results: Overall, 23 391 cases (13 098 Omicron; 10 293 Delta) and 46 764 controls were included (mean age, 40.3 [SD, 15.6] years; 42 050 [60.1%] women). Prior receipt of 3 mRNA vaccine doses was reported for 18.6% (n = 2441) of Omicron cases, 6.6% (n = 679) of Delta cases, and 39.7% (n = 18 587) of controls; prior receipt of 2 mRNA vaccine doses was reported for 55.3% (n = 7245), 44.4% (n = 4570), and 41.6% (n = 19 456), respectively; and being unvaccinated was reported for 26.0% (n = 3412), 49.0% (n = 5044), and 18.6% (n = 8721), respectively. The adjusted odds ratio for 3 doses vs unvaccinated was 0.33 (95% CI, 0.31-0.35) for Omicron and 0.065 (95% CI, 0.059-0.071) for Delta; for 3 vaccine doses vs 2 doses the adjusted odds ratio was 0.34 (95% CI, 0.32-0.36) for Omicron and 0.16 (95% CI, 0.14-0.17) for Delta. Median cycle threshold values were significantly higher in cases with 3 doses vs 2 doses for both Omicron and Delta (Omicron N gene: 19.35 vs 18.52; Omicron ORF1ab gene: 19.25 vs 18.40; Delta N gene: 19.07 vs 17.52; Delta ORF1ab gene: 18.70 vs 17.28; Delta S gene: 23.62 vs 20.24). Conclusions and Relevance: Among individuals seeking testing for COVID-like illness in the US in December 2021, receipt of 3 doses of mRNA COVID-19 vaccine (compared with unvaccinated and with receipt of 2 doses) was less likely among cases with symptomatic SARS-CoV-2 infection compared with test-negative controls. These findings suggest that receipt of 3 doses of mRNA vaccine, relative to being unvaccinated and to receipt of 2 doses, was associated with protection against both the Omicron and Delta variants, although the higher odds ratios for Omicron suggest less protection for Omicron than for Delta.


Subject(s)
2019-nCoV Vaccine mRNA-1273/administration & dosage , BNT162 Vaccine/administration & dosage , COVID-19 Vaccines/administration & dosage , COVID-19/prevention & control , SARS-CoV-2 , Vaccine Efficacy , Adolescent , Adult , Aged , COVID-19/epidemiology , COVID-19/virology , Case-Control Studies , Dose-Response Relationship, Immunologic , Humans , Immunization, Secondary , Middle Aged , Odds Ratio , Regression Analysis , Retrospective Studies , Risk Factors , Young Adult
4.
Nat Immunol ; 23(3): 423-430, 2022 03.
Article in English | MEDLINE | ID: covidwho-1713201

ABSTRACT

The global severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic requires effective therapies against coronavirus disease 2019 (COVID-19), and neutralizing antibodies are a promising therapy. A noncompeting pair of human neutralizing antibodies (B38 and H4) blocking SARS-CoV-2 binding to its receptor, ACE2, have been described previously. Here, we develop bsAb15, a bispecific monoclonal antibody (bsAb) based on B38 and H4. bsAb15 has greater neutralizing efficiency than these parental antibodies, results in less selective pressure and retains neutralizing ability to most SARS-CoV-2 variants of concern (with more potent neutralizing activity against the Delta variant). We also selected for escape mutants of the two parental mAbs, a mAb cocktail and bsAb15, demonstrating that bsAb15 can efficiently neutralize all single-mAb escape mutants. Furthermore, prophylactic and therapeutic application of bsAb15 reduced the viral titer in infected nonhuman primates and human ACE2 transgenic mice. Therefore, this bsAb is a feasible and effective strategy to treat and prevent severe COVID-19.


Subject(s)
Antibodies, Bispecific/immunology , Antibodies, Monoclonal/immunology , Antibodies, Viral/immunology , SARS-CoV-2/immunology , Animals , Antibodies, Bispecific/chemistry , Antibodies, Bispecific/genetics , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/genetics , Antibodies, Neutralizing/genetics , Antibodies, Neutralizing/immunology , Antibodies, Viral/chemistry , Antibodies, Viral/genetics , COVID-19/immunology , COVID-19/pathology , COVID-19/prevention & control , COVID-19/virology , Cloning, Molecular , Disease Models, Animal , Dose-Response Relationship, Immunologic , Epitopes , Humans , Macaca mulatta , Mice , Neutralization Tests , Protein Engineering/methods , Structure-Activity Relationship
5.
J Am Soc Nephrol ; 33(1): 49-57, 2022 01.
Article in English | MEDLINE | ID: covidwho-1607904

ABSTRACT

BACKGROUND: Patients on hemodialysis have an elevated risk for COVID-19 but were not included in efficacy trials of SARS-CoV-2 vaccines. METHODS: We conducted a retrospective, observational study to estimate the real-world effectiveness and immunogenicity of two mRNA SARS-CoV-2 vaccines in a large, representative population of adult hemodialysis patients in the United States. In separate, parallel analyses, patients who began a vaccination series with BNT162b2 or mRNA-1273 in January and February 2021 were matched with unvaccinated patients and risk for outcomes were compared for days 1-21, 22-42, and ≥43 after first dose. In a subset of consented patients, blood samples were collected approximately 28 days after the second dose and anti-SARS-CoV-2 immunoglobulin G was measured. RESULTS: A total of 12,169 patients received the BNT162b2 vaccine (matched with 44,377 unvaccinated controls); 23,037 patients received the mRNA-1273 vaccine (matched with 63,243 unvaccinated controls). Compared with controls, vaccinated patients' risk of being diagnosed with COVID-19 postvaccination became progressively lower during the study period (hazard ratio and 95% confidence interval for BNT162b2 was 0.21 [0.13, 0.35] and for mRNA-1273 was 0.27 [0.17, 0.42] for days ≥43). After a COVID-19 diagnosis, vaccinated patients were significantly less likely than unvaccinated patients to be hospitalized (for BNT162b2, 28.0% versus 43.4%; for mRNA-1273, 37.2% versus 45.6%) and significantly less likely to die (for BNT162b2, 4.0% versus 12.1%; for mRNA-1273, 5.6% versus 14.5%). Antibodies were detected in 98.1% (309/315) and 96.0% (308/321) of BNT162b2 and mRNA-1273 patients, respectively. CONCLUSIONS: In patients on hemodialysis, vaccination with BNT162b2 or mRNA-1273 was associated with a lower risk of COVID-19 diagnosis and lower risk of hospitalization or death among those diagnosed with COVID-19. SARS-CoV-2 antibodies were detected in nearly all patients after vaccination. These findings support the use of these vaccines in this population.


Subject(s)
2019-nCoV Vaccine mRNA-1273/administration & dosage , 2019-nCoV Vaccine mRNA-1273/immunology , BNT162 Vaccine/administration & dosage , BNT162 Vaccine/immunology , COVID-19/immunology , COVID-19/prevention & control , Renal Dialysis/adverse effects , SARS-CoV-2/immunology , Aged , Aged, 80 and over , Antibodies, Viral/blood , Dose-Response Relationship, Immunologic , Female , Humans , Male , Middle Aged , Prospective Studies , Retrospective Studies , Risk Factors , Treatment Outcome
6.
Front Immunol ; 12: 776933, 2021.
Article in English | MEDLINE | ID: covidwho-1581333

ABSTRACT

The efficacy of COVID-19 vaccines appears to depend in complex ways on the vaccine dosage and the interval between the prime and boost doses. Unexpectedly, lower dose prime and longer prime-boost intervals have yielded higher efficacies in clinical trials. To elucidate the origins of these effects, we developed a stochastic simulation model of the germinal center (GC) reaction and predicted the antibody responses elicited by different vaccination protocols. The simulations predicted that a lower dose prime could increase the selection stringency in GCs due to reduced antigen availability, resulting in the selection of GC B cells with higher affinities for the target antigen. The boost could relax this selection stringency and allow the expansion of the higher affinity GC B cells selected, improving the overall response. With a longer dosing interval, the decay in the antigen with time following the prime could further increase the selection stringency, amplifying this effect. The effect remained in our simulations even when new GCs following the boost had to be seeded by memory B cells formed following the prime. These predictions offer a plausible explanation of the observed paradoxical effects of dosage and dosing interval on vaccine efficacy. Tuning the selection stringency in the GCs using prime-boost dosages and dosing intervals as handles may help improve vaccine efficacies.


Subject(s)
B-Lymphocytes/immunology , COVID-19 Vaccines/immunology , COVID-19/immunology , Clonal Selection, Antigen-Mediated/immunology , Germinal Center/immunology , Host-Pathogen Interactions/immunology , SARS-CoV-2/immunology , Antigens/immunology , B-Lymphocytes/metabolism , COVID-19/virology , COVID-19 Vaccines/administration & dosage , Dose-Response Relationship, Immunologic , Germinal Center/metabolism , Humans , Immunization, Secondary , Models, Theoretical , Vaccination , Vaccine Efficacy
7.
Front Immunol ; 12: 795741, 2021.
Article in English | MEDLINE | ID: covidwho-1581316

ABSTRACT

Glycan-masking the vaccine antigen by mutating the undesired antigenic sites with an additional N-linked glycosylation motif can refocus B-cell responses to desired epitopes, without affecting the antigen's overall-folded structure. This study examined the impact of glycan-masking mutants of the N-terminal domain (NTD) and receptor-binding domain (RBD) of SARS-CoV-2, and found that the antigenic design of the S protein increases the neutralizing antibody titers against the Wuhan-Hu-1 ancestral strain and the recently emerged SARS-CoV-2 variants Alpha (B.1.1.7), Beta (B.1.351), and Delta (B.1.617.2). Our results demonstrated that the use of glycan-masking Ad-S-R158N/Y160T in the NTD elicited a 2.8-fold, 6.5-fold, and 4.6-fold increase in the IC-50 NT titer against the Alpha (B.1.1.7), Beta (B.1.351) and Delta (B.1.617.2) variants, respectively. Glycan-masking of Ad-S-D428N in the RBD resulted in a 3.0-fold and 2.0-fold increase in the IC-50 neutralization titer against the Alpha (B.1.1.7) and Beta (B.1.351) variants, respectively. The use of glycan-masking in Ad-S-R158N/Y160T and Ad-S-D428N antigen design may help develop universal COVID-19 vaccines against current and future emerging SARS-CoV-2 variants.


Subject(s)
Antigens, Viral/immunology , COVID-19/immunology , Epitopes/immunology , Protein Interaction Domains and Motifs/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Adenoviridae/genetics , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Antibody Formation/immunology , COVID-19/prevention & control , COVID-19/virology , COVID-19 Vaccines/genetics , COVID-19 Vaccines/immunology , Disease Models, Animal , Dose-Response Relationship, Immunologic , Female , Genetic Engineering , Genetic Vectors/genetics , Humans , Immunization , Mice , Neutralization Tests , Polysaccharides , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Structure-Activity Relationship
8.
Virology ; 566: 56-59, 2022 01.
Article in English | MEDLINE | ID: covidwho-1550137

ABSTRACT

BACKGROUND: Recombinant protein subunit vaccination is considered to be a safe, fast and reliable technique when combating emerging and re-emerging diseases such as coronavirus disease 2019 (COVID-19). Typically, such subunit vaccines require the addition of adjuvants to attain adequate immunogenicity. AS01, which contains adjuvants MPL and saponin QS21, is a liposome-based vaccine adjuvant system that is one of the leading candidates. However, the adjuvant effect of AS01 in COVID-19 vaccines is not well described yet. METHODS: In this study, we utilized a mixture of AS01 as the adjuvant for an S1 protein-based COVID-19 vaccine. RESULTS: The adjuvanted vaccine induced robust immunoglobulin G (IgG) binding antibody and virus-neutralizing antibody responses. Importantly, two doses induced similar levels of IgG binding antibody and neutralizing antibody responses compared with three doses and the antibody responses weakened only slightly over time up to six weeks after immunization. CONCLUSION: These results suggested that two doses may be enough for a clinical vaccine strategy design using MPL & QS21 adjuvanted recombinant protein, especially in consideration of the limited production capacity of COVID-19 vaccine in a public health emergency.


Subject(s)
Antigens, Viral/immunology , COVID-19 Vaccines/immunology , COVID-19/immunology , Lipid A/analogs & derivatives , SARS-CoV-2/immunology , Saponins/immunology , Spike Glycoprotein, Coronavirus/immunology , Vaccines, Subunit/immunology , Adjuvants, Immunologic/administration & dosage , Adjuvants, Vaccine/administration & dosage , Animals , Antibodies, Neutralizing , Antibodies, Viral/metabolism , Antibody Formation , COVID-19/virology , Dose-Response Relationship, Immunologic , Drug Combinations , Female , HEK293 Cells , Humans , Immunization , Immunogenicity, Vaccine , Lipid A/administration & dosage , Lipid A/immunology , Mice, Inbred BALB C , Recombinant Proteins/administration & dosage , Recombinant Proteins/immunology , Saponins/administration & dosage
9.
J Virol ; 96(3): e0150421, 2022 02 09.
Article in English | MEDLINE | ID: covidwho-1546442

ABSTRACT

In the age of COVID, nucleic acid vaccines have garnered much attention, at least in part, because of the simplicity of construction, production, and flexibility to adjust and adapt to an evolving outbreak. Orthopoxviruses remain a threat on multiple fronts, especially as emerging zoonoses. In response, we developed a DNA vaccine, termed 4pox, that protected nonhuman primates against monkeypox virus (MPXV)-induced severe disease. Here, we examined the protective efficacy of the 4pox DNA vaccine delivered by intramuscular (i.m.) electroporation (EP) in rabbits challenged with aerosolized rabbitpox virus (RPXV), a model that recapitulates the respiratory route of exposure and low dose associated with natural smallpox exposure in humans. We found that 4pox-vaccinated rabbits developed immunogen-specific antibodies, including neutralizing antibodies, and did not develop any clinical disease, indicating protection against aerosolized RPXV. In contrast, unvaccinated animals developed significant signs of disease, including lesions, and were euthanized. These findings demonstrate that an unformulated, nonadjuvanted DNA vaccine delivered i.m. can protect against an aerosol exposure. IMPORTANCE The eradication of smallpox and subsequent cessation of vaccination have left a majority of the population susceptible to variola virus or other emerging poxviruses. This is exemplified by human monkeypox, as evidenced by the increase in reported endemic and imported cases over the past decades. Therefore, a malleable vaccine technology that can be mass produced and does not require complex conditions for distribution and storage is sought. Herein, we show that a DNA vaccine, in the absence of a specialized formulation or adjuvant, can protect against a lethal aerosol insult of rabbitpox virus.


Subject(s)
Nucleic Acid-Based Vaccines/immunology , Orthopoxvirus/immunology , Poxviridae Infections/prevention & control , Vaccinia virus/immunology , Vaccinia/prevention & control , Viral Proteins/immunology , Viral Vaccines/immunology , Animals , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Dose-Response Relationship, Immunologic , Electroporation , Female , Immunization/methods , Immunogenicity, Vaccine , Lymphocyte Activation/immunology , Nucleic Acid-Based Vaccines/administration & dosage , Oligodeoxyribonucleotides/administration & dosage , Oligodeoxyribonucleotides/immunology , Rabbits , Vaccines, DNA/immunology , Vaccinia virus/genetics , Viral Vaccines/administration & dosage
10.
BMJ ; 375: e067873, 2021 11 24.
Article in English | MEDLINE | ID: covidwho-1533017

ABSTRACT

OBJECTIVES: To determine whether time elapsed since the second injection of the Pfizer-BioNTech BNT162b2 mRNA vaccine was significantly associated with the risk of covid-19 infection after vaccination in people who received two vaccine injections. DESIGN: Test negative design study. SETTING: Electronic health records of a large state mandated healthcare organisation, Israel. PARTICIPANTS: Adults aged ≥18 years who had received a reverse transcription polymerase chain reaction (RT-PCR) test between 15 May 2021 and 17 September 2021, at least three weeks after their second vaccine injection, had not received a third vaccine injection, and had no history of covid-19 infection. MAIN OUTCOME MEASURES: Positive result for the RT-PCR test. Individuals who tested positive for SARS-CoV-2 and controls were matched for week of testing, age category, and demographic group (ultra-orthodox Jews, individuals of Arab ancestry, and the general population). Conditional logistic regression was adjusted for age, sex, socioeconomic status, and comorbid conditions. RESULTS: 83 057 adults received an RT-PCR test for SARS-CoV-2 during the study period and 9.6% had a positive result. Time elapsed since the vaccine injection was significantly longer in individuals who tested positive (P<0.001). Adjusted odds ratio for infection at time intervals >90 days since vaccination were significantly increased compared with the reference of <90 days: 2.37 (95% confidence interval 1.67 to 3.36) for 90-119 days, 2.66 (1.94 to 3.66) for 120-149 days, 2.82 (2.07 to 3.84) for 150-179 days, and 2.82 (2.07 to 3.85) for ≥180 days (P<0.001 for each 30 day interval). CONCLUSIONS: In this large population of adults tested for SARS-CoV-2 by RT-PCR after two doses of mRNA BNT162b2 vaccine, a gradual increase in the risk of infection was seen for individuals who received their second vaccine dose after at least 90 days.


Subject(s)
BNT162 Vaccine/administration & dosage , COVID-19/prevention & control , Adult , Aged , BNT162 Vaccine/immunology , COVID-19/epidemiology , COVID-19/immunology , COVID-19 Testing , Dose-Response Relationship, Immunologic , Female , Humans , Immunogenicity, Vaccine/immunology , Israel/epidemiology , Male , Middle Aged , Pandemics , Risk Factors , SARS-CoV-2 , Time Factors
12.
Lancet Oncol ; 22(6): 765-778, 2021 06.
Article in English | MEDLINE | ID: covidwho-1531901

ABSTRACT

BACKGROUND: The efficacy and safety profiles of vaccines against SARS-CoV-2 in patients with cancer is unknown. We aimed to assess the safety and immunogenicity of the BNT162b2 (Pfizer-BioNTech) vaccine in patients with cancer. METHODS: For this prospective observational study, we recruited patients with cancer and healthy controls (mostly health-care workers) from three London hospitals between Dec 8, 2020, and Feb 18, 2021. Participants who were vaccinated between Dec 8 and Dec 29, 2020, received two 30 µg doses of BNT162b2 administered intramuscularly 21 days apart; patients vaccinated after this date received only one 30 µg dose with a planned follow-up boost at 12 weeks. Blood samples were taken before vaccination and at 3 weeks and 5 weeks after the first vaccination. Where possible, serial nasopharyngeal real-time RT-PCR (rRT-PCR) swab tests were done every 10 days or in cases of symptomatic COVID-19. The coprimary endpoints were seroconversion to SARS-CoV-2 spike (S) protein in patients with cancer following the first vaccination with the BNT162b2 vaccine and the effect of vaccine boosting after 21 days on seroconversion. All participants with available data were included in the safety and immunogenicity analyses. Ongoing follow-up is underway for further blood sampling after the delayed (12-week) vaccine boost. This study is registered with the NHS Health Research Authority and Health and Care Research Wales (REC ID 20/HRA/2031). FINDINGS: 151 patients with cancer (95 patients with solid cancer and 56 patients with haematological cancer) and 54 healthy controls were enrolled. For this interim data analysis of the safety and immunogenicity of vaccinated patients with cancer, samples and data obtained up to March 19, 2021, were analysed. After exclusion of 17 patients who had been exposed to SARS-CoV-2 (detected by either antibody seroconversion or a positive rRT-PCR COVID-19 swab test) from the immunogenicity analysis, the proportion of positive anti-S IgG titres at approximately 21 days following a single vaccine inoculum across the three cohorts were 32 (94%; 95% CI 81-98) of 34 healthy controls; 21 (38%; 26-51) of 56 patients with solid cancer, and eight (18%; 10-32) of 44 patients with haematological cancer. 16 healthy controls, 25 patients with solid cancer, and six patients with haematological cancer received a second dose on day 21. Of the patients with available blood samples 2 weeks following a 21-day vaccine boost, and excluding 17 participants with evidence of previous natural SARS-CoV-2 exposure, 18 (95%; 95% CI 75-99) of 19 patients with solid cancer, 12 (100%; 76-100) of 12 healthy controls, and three (60%; 23-88) of five patients with haematological cancers were seropositive, compared with ten (30%; 17-47) of 33, 18 (86%; 65-95) of 21, and four (11%; 4-25) of 36, respectively, who did not receive a boost. The vaccine was well tolerated; no toxicities were reported in 75 (54%) of 140 patients with cancer following the first dose of BNT162b2, and in 22 (71%) of 31 patients with cancer following the second dose. Similarly, no toxicities were reported in 15 (38%) of 40 healthy controls after the first dose and in five (31%) of 16 after the second dose. Injection-site pain within 7 days following the first dose was the most commonly reported local reaction (23 [35%] of 65 patients with cancer; 12 [48%] of 25 healthy controls). No vaccine-related deaths were reported. INTERPRETATION: In patients with cancer, one dose of the BNT162b2 vaccine yields poor efficacy. Immunogenicity increased significantly in patients with solid cancer within 2 weeks of a vaccine boost at day 21 after the first dose. These data support prioritisation of patients with cancer for an early (day 21) second dose of the BNT162b2 vaccine. FUNDING: King's College London, Cancer Research UK, Wellcome Trust, Rosetrees Trust, and Francis Crick Institute.


Subject(s)
COVID-19 Vaccines/therapeutic use , COVID-19/immunology , Neoplasms/immunology , Adult , Aged , Aged, 80 and over , Antibodies, Viral/blood , BNT162 Vaccine , COVID-19/blood , COVID-19/complications , COVID-19/virology , COVID-19 Vaccines/immunology , Dose-Response Relationship, Immunologic , Female , Humans , Immunogenicity, Vaccine/immunology , London/epidemiology , Male , Middle Aged , Neoplasms/blood , Neoplasms/complications , Neoplasms/virology , Prospective Studies , SARS-CoV-2 , Wales
13.
PLoS One ; 16(11): e0259990, 2021.
Article in English | MEDLINE | ID: covidwho-1518365

ABSTRACT

BACKGROUND: COVID-19 vaccination in many countries, including England, has been prioritised primarily by age. However, people of the same age can have very different health statuses. Frailty is a commonly used metric of health and has been found to be more strongly associated with mortality than age among COVID-19 inpatients. METHODS: We compared the number of first vaccine doses administered across the 135 NHS Clinical Commissioning Groups (CCGs) of England to both the over 50 population and the estimated frail population in each area. Area-based frailty estimates were generated using the English Longitudinal Survey of Ageing (ELSA), a national survey of older people. We also compared the number of doses to the number of people with other risk factors associated with COVID-19: atrial fibrillation, chronic kidney disease, diabetes, learning disabilities, obesity and smoking status. RESULTS: We estimate that after 79 days of the vaccine program, across all Clinical Commissioning Group areas, the number of people who received a first vaccine per frail person ranged from 4.4 (95% CI 4.0-4.8) and 20.1 (95% CI 18.3-21.9). The prevalences of other risk factors were also poorly associated with the prevalence of vaccination across England. CONCLUSIONS: Vaccination with age-based priority created area-based inequities in the number of doses administered relative to the number of people who are frail or have other risk factors associated with COVID-19. As frailty has previously been found to be more strongly associated with mortality than age for COVID-19 inpatients, an age-based priority system may increase the risk of mortality in some areas during the vaccine roll-out period. Authorities planning COVID-19 vaccination programmes should consider the disadvantages of an age-based priority system.


Subject(s)
COVID-19 Vaccines/immunology , Vaccination , COVID-19/epidemiology , COVID-19/immunology , Dose-Response Relationship, Immunologic , England/epidemiology , Geography , Humans , Prevalence , Risk Factors
14.
Neurotherapeutics ; 18(4): 2397-2418, 2021 10.
Article in English | MEDLINE | ID: covidwho-1509358

ABSTRACT

In the last 25 years, intravenous immunoglobulin (IVIg) has had a major impact in the successful treatment of previously untreatable or poorly controlled autoimmune neurological disorders. Derived from thousands of healthy donors, IVIg contains IgG1 isotypes of idiotypic antibodies that have the potential to bind pathogenic autoantibodies or cross-react with various antigenic peptides, including proteins conserved among the "common cold"-pre-pandemic coronaviruses; as a result, after IVIg infusions, some of the patients' sera may transiently become positive for various neuronal antibodies, even for anti-SARS-CoV-2, necessitating caution in separating antibodies derived from the infused IVIg or acquired humoral immunity. IVIg exerts multiple effects on the immunoregulatory network by variably affecting autoantibodies, complement activation, FcRn saturation, FcγRIIb receptors, cytokines, and inflammatory mediators. Based on randomized controlled trials, IVIg is approved for the treatment of GBS, CIDP, MMN and dermatomyositis; has been effective in, myasthenia gravis exacerbations, and stiff-person syndrome; and exhibits convincing efficacy in autoimmune epilepsy, neuromyelitis, and autoimmune encephalitis. Recent evidence suggests that polymorphisms in the genes encoding FcRn and FcγRIIB may influence the catabolism of infused IgG or its anti-inflammatory effects, impacting on individualized dosing or efficacy. For chronic maintenance therapy, IVIg and subcutaneous IgG are effective in controlled studies only in CIDP and MMN preventing relapses and axonal loss up to 48 weeks; in practice, however, IVIg is continuously used for years in all the aforementioned neurological conditions, like is a "forever necessary therapy" for maintaining stability, generating challenges on when and how to stop it. Because about 35-40% of patients on chronic therapy do not exhibit objective neurological signs of worsening after stopping IVIg but express subjective symptoms of fatigue, pains, spasms, or a feeling of generalized weakness, a conditioning effect combined with fear that discontinuing chronic therapy may destabilize a multi-year stability status is likely. The dilemmas of continuing chronic therapy, the importance of adjusting dosing and scheduling or periodically stopping IVIg to objectively assess necessity, and concerns in accurately interpreting IVIg-dependency are discussed. Finally, the merit of subcutaneous IgG, the ineffectiveness of IVIg in IgG4-neurological autoimmunities, and genetic factors affecting IVIg dosing and efficacy are addressed.


Subject(s)
Autoimmune Diseases of the Nervous System/immunology , Autoimmune Diseases of the Nervous System/therapy , Autoimmunity/immunology , Immunoglobulins, Intravenous/administration & dosage , Immunoglobulins, Intravenous/immunology , Withholding Treatment , Autoantibodies/drug effects , Autoantibodies/immunology , Autoimmunity/drug effects , COVID-19/immunology , COVID-19/therapy , Dose-Response Relationship, Immunologic , Humans , SARS-CoV-2/drug effects , SARS-CoV-2/immunology , Treatment Outcome
15.
Clin Pharmacol Ther ; 111(3): 595-604, 2022 03.
Article in English | MEDLINE | ID: covidwho-1479393

ABSTRACT

Neutralizing monoclonal antibodies (mAb), novel therapeutics for the treatment of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2), have been urgently researched from the start of the pandemic. The selection of the optimal mAb candidate and therapeutic dose were expedited using open-access in silico models. The maximally effective therapeutic mAb dose was determined through two approaches; both expanded on innovative, open-science initiatives. A physiologically-based pharmacokinetic (PBPK) model, incorporating physicochemical properties predictive of mAb clearance and tissue distribution, was used to estimate mAb exposure that maintained concentrations above 90% inhibitory concentration of in vitro neutralization in lung tissue for up to 4 weeks in 90% of patients. To achieve fastest viral clearance following onset of symptoms, a longitudinal SARS-CoV-2 viral dynamic model was applied to estimate viral clearance as a function of drug concentration and dose. The PBPK model-based approach suggested that a clinical dose between 175 and 500 mg of bamlanivimab would maintain target mAb concentrations in the lung tissue over 28 days in 90% of patients. The viral dynamic model suggested a 700 mg dose would achieve maximum viral elimination. Taken together, the first-in-human trial (NCT04411628) conservatively proceeded with a starting therapeutic dose of 700 mg and escalated to higher doses to evaluate the upper limit of safety and tolerability. Availability of open-access codes and application of novel in silico model-based approaches supported the selection of bamlanivimab and identified the lowest dose evaluated in this study that was expected to result in the maximum therapeutic effect before the first-in-human clinical trial.


Subject(s)
Antibodies, Monoclonal, Humanized/administration & dosage , Antibodies, Monoclonal/administration & dosage , Antibodies, Neutralizing/administration & dosage , Antiviral Agents/administration & dosage , Models, Biological , SARS-CoV-2/drug effects , Antibodies, Monoclonal/pharmacokinetics , Antiviral Agents/pharmacokinetics , Clinical Trials as Topic , Computer Simulation , Dose-Response Relationship, Drug , Dose-Response Relationship, Immunologic , Humans , SARS-CoV-2/immunology
16.
Sci Immunol ; 6(66): eabi8635, 2021 Dec 03.
Article in English | MEDLINE | ID: covidwho-1467663

ABSTRACT

SARS-CoV-2 has caused a global pandemic that has infected more than 250 million people worldwide. Although several vaccine candidates have received emergency use authorization, there is still limited knowledge on how vaccine dosing affects immune responses. We performed mechanistic studies in mice to understand how the priming dose of an adenovirus-based SARS-CoV-2 vaccine affects long-term immunity to SARS-CoV-2. We first primed C57BL/6 mice with an adenovirus serotype 5 vaccine encoding the SARS-CoV-2 spike protein, similar to that used in the CanSino and Sputnik V vaccines. The vaccine prime was administered at either a standard dose or 1000-fold lower dose, followed by a boost with the standard dose 4 weeks later. Initially, the low dose prime induced lower immune responses relative to the standard dose prime. However, the low dose prime elicited immune responses that were qualitatively superior and, upon boosting, exhibited substantially more potent recall and functional capacity. We also report similar effects with a simian immunodeficiency virus (SIV) vaccine. These findings show an unexpected advantage of fractionating vaccine prime doses, warranting a reevaluation of vaccine trial protocols for SARS-CoV-2 and other pathogens.


Subject(s)
COVID-19 Vaccines/immunology , Immunogenicity, Vaccine , Adenoviridae/genetics , Adenoviridae/immunology , Animals , CD8-Positive T-Lymphocytes/immunology , COVID-19 Vaccines/chemistry , Dose-Response Relationship, Immunologic , Female , Genetic Vectors , Male , Mice , Mice, Inbred C57BL
17.
Cell ; 184(23): 5699-5714.e11, 2021 11 11.
Article in English | MEDLINE | ID: covidwho-1466093

ABSTRACT

Extension of the interval between vaccine doses for the BNT162b2 mRNA vaccine was introduced in the United Kingdom to accelerate population coverage with a single dose. At this time, trial data were lacking, and we addressed this in a study of United Kingdom healthcare workers. The first vaccine dose induced protection from infection from the circulating alpha (B.1.1.7) variant over several weeks. In a substudy of 589 individuals, we show that this single dose induces severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) neutralizing antibody (NAb) responses and a sustained B and T cell response to the spike protein. NAb levels were higher after the extended dosing interval (6-14 weeks) compared with the conventional 3- to 4-week regimen, accompanied by enrichment of CD4+ T cells expressing interleukin-2 (IL-2). Prior SARS-CoV-2 infection amplified and accelerated the response. These data on dynamic cellular and humoral responses indicate that extension of the dosing interval is an effective immunogenic protocol.


Subject(s)
COVID-19 Vaccines/immunology , Vaccines, Synthetic/immunology , Adult , Aged , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , BNT162 Vaccine , COVID-19/blood , COVID-19/immunology , COVID-19/virology , Cross-Priming/immunology , Dose-Response Relationship, Immunologic , Ethnicity , Female , Humans , Immunity , Immunoglobulin G/immunology , Linear Models , Male , Middle Aged , Reference Standards , SARS-CoV-2/immunology , T-Lymphocytes/immunology , Treatment Outcome , Young Adult
18.
Nat Commun ; 12(1): 5861, 2021 10 06.
Article in English | MEDLINE | ID: covidwho-1454761

ABSTRACT

Several COVID-19 vaccines have shown good efficacy in clinical trials, but there remains uncertainty about the efficacy of vaccines against different variants. Here, we investigate the efficacy of ChAdOx1 nCoV-19 (AZD1222) against symptomatic COVID-19 in a post-hoc exploratory analysis of a Phase 3 randomised trial in Brazil (trial registration ISRCTN89951424). Nose and throat swabs were tested by PCR in symptomatic participants. Sequencing and genotyping of swabs were performed to determine the lineages of SARS-CoV-2 circulating during the study. Protection against any symptomatic COVID-19 caused by the Zeta (P.2) variant was assessed in 153 cases with vaccine efficacy (VE) of 69% (95% CI 55, 78). 49 cases of B.1.1.28 occurred and VE was 73% (46, 86). The Gamma (P.1) variant arose later in the trial and fewer cases (N = 18) were available for analysis. VE was 64% (-2, 87). ChAdOx1 nCoV-19 provided 95% protection (95% CI 61%, 99%) against hospitalisation due to COVID-19. In summary, we report that ChAdOx1 nCoV-19 protects against emerging variants in Brazil despite the presence of the spike protein mutation E484K.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/immunology , COVID-19/virology , Phylogeny , SARS-CoV-2/immunology , Adolescent , Adult , Aged , Brazil , ChAdOx1 nCoV-19 , Cohort Studies , Dose-Response Relationship, Immunologic , Female , Hospitalization , Humans , Male , Middle Aged , Treatment Outcome , Vaccination , Viral Load/immunology , Young Adult
19.
PLoS Med ; 18(10): e1003769, 2021 10.
Article in English | MEDLINE | ID: covidwho-1448569

ABSTRACT

BACKGROUND: NVX-CoV2373 is a recombinant severe acute respiratory coronavirus 2 (rSARS-CoV-2) nanoparticle vaccine composed of trimeric full-length SARS-CoV-2 spike glycoproteins and Matrix-M1 adjuvant. METHODS AND FINDINGS: The phase 2 component of our randomized, placebo-controlled, phase 1 to 2 trial was designed to identify which dosing regimen of NVX-CoV2373 should move forward into late-phase studies and was based on immunogenicity and safety data through Day 35 (14 days after the second dose). The trial was conducted at 9 sites in Australia and 8 sites in the United States. Participants in 2 age groups (aged 18 to 59 and 60 to 84 years) were randomly assigned to receive either 1 or 2 intramuscular doses of 5-µg or 25-µg NVX-CoV2373 or placebo, 21 days apart. Primary endpoints were immunoglobulin G (IgG) anti-spike protein response, 7-day solicited reactogenicity, and unsolicited adverse events. A key secondary endpoint was wild-type virus neutralizing antibody response. After enrollment, 1,288 participants were randomly assigned to 1 of 4 vaccine groups or placebo, with 1,283 participants administered at least 1 study treatment. Of these, 45% were older participants 60 to 84 years. Reactogenicity was predominantly mild to moderate in severity and of short duration (median <3 days) after first and second vaccination with NVX-CoV2373, with higher frequencies and intensity after second vaccination and with the higher dose. Reactogenicity occurred less frequently and was of lower intensity in older participants. Both 2-dose regimens of 5-µg and 25-µg NVX-CoV2373 induced robust immune responses in younger and older participants. For the 2-dose regimen of 5 µg, geometric mean titers (GMTs) for IgG anti-spike protein were 65,019 (95% confidence interval (CI) 55,485 to 76,192) and 28,137 (95% CI 21,617 to 36,623) EU/mL and for wild-type virus neutralizing antibody (with an inhibitory concentration of 50%-MN50%) were 2,201 (95% CI 1,343 to 3,608) and 981 (95% CI 560 to 1,717) titers for younger and older participants, respectively, with seroconversion rates of 100% in both age groups. Neutralizing antibody responses exceeded those seen in a panel of convalescent sera for both age groups. Study limitations include the relatively short duration of safety follow-up to date and current lack of immune persistence data beyond the primary vaccination regimen time point assessments, but these data will accumulate over time. CONCLUSIONS: The study confirmed the phase 1 findings that the 2-dose regimen of 5-µg NVX-CoV2373 is highly immunogenic and well tolerated in younger adults. In addition, in older adults, the 2-dose regimen of 5 µg was also well tolerated and showed sufficient immunogenicity to support its use in late-phase efficacy studies. TRIAL REGISTRATION: ClinicalTrials.gov NCT04368988.


Subject(s)
COVID-19 Vaccines/administration & dosage , COVID-19/prevention & control , Immunogenicity, Vaccine , Adolescent , Adult , Aged , Aged, 80 and over , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Dose-Response Relationship, Immunologic , Female , Humans , Immunoglobulin G/immunology , Male , Middle Aged , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Young Adult
20.
Nat Commun ; 12(1): 5469, 2021 09 22.
Article in English | MEDLINE | ID: covidwho-1434103

ABSTRACT

SARS-CoV-2 remains a global threat to human health particularly as escape mutants emerge. There is an unmet need for effective treatments against COVID-19 for which neutralizing single domain antibodies (nanobodies) have significant potential. Their small size and stability mean that nanobodies are compatible with respiratory administration. We report four nanobodies (C5, H3, C1, F2) engineered as homotrimers with pmolar affinity for the receptor binding domain (RBD) of the SARS-CoV-2 spike protein. Crystal structures show C5 and H3 overlap the ACE2 epitope, whilst C1 and F2 bind to a different epitope. Cryo Electron Microscopy shows C5 binding results in an all down arrangement of the Spike protein. C1, H3 and C5 all neutralize the Victoria strain, and the highly transmissible Alpha (B.1.1.7 first identified in Kent, UK) strain and C1 also neutralizes the Beta (B.1.35, first identified in South Africa). Administration of C5-trimer via the respiratory route showed potent therapeutic efficacy in the Syrian hamster model of COVID-19 and separately, effective prophylaxis. The molecule was similarly potent by intraperitoneal injection.


Subject(s)
Antibodies, Neutralizing/pharmacology , COVID-19 Drug Treatment , Single-Domain Antibodies/pharmacology , Spike Glycoprotein, Coronavirus/metabolism , Administration, Intranasal , Animals , Antibodies, Neutralizing/administration & dosage , Antibodies, Neutralizing/genetics , Antibodies, Neutralizing/immunology , Cryoelectron Microscopy , Crystallography, X-Ray , Disease Models, Animal , Dose-Response Relationship, Immunologic , Epitopes/chemistry , Epitopes/metabolism , Female , Male , Mesocricetus , Neutralization Tests , SARS-CoV-2/drug effects , Single-Domain Antibodies/administration & dosage , Single-Domain Antibodies/immunology , Single-Domain Antibodies/metabolism , Spike Glycoprotein, Coronavirus/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL